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ABSTRACT The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dom-

inant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are

serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent

opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs

are predicted to be major components of the signaling pathways that allow plants to respond to environmental and de-

velopmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of

individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the tran-

scriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants,

including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of

the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby

providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated

whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily

displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing

the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional

basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their

function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which

the members of the RLK gene family may be involved, where such information has remained elusive for so many of

its members.

Key words: Abiotic/environmental stress; hormone biology; receptors; transcriptome analysis; disease responses;

Arabidopsis.

INTRODUCTION

The emergence of multicellularity in eukaryotes represents

a sophisticated achievement in evolutionary history. Although

its exact origins remain obscure, multicellularity appears to

have evolved independently in a variety of eukaryotic phyla,

perhaps many times (Kaiser, 2001; Bonner, 1998; King, 2004).

Despite these broad beginnings, a unifying requirement of

multicellularity is the capacity for individual cells to sense en-

vironmental and developmental cues in order to coordi-

nate their behavior with neighboring cells (Pires-daSilva and

Sommer, 2003). Not surprisingly, the genomes of multicellular

organisms encode a number of molecular mechanisms that

confer such sensory capacity during environmental and devel-

opmental responses.

In particular, a number of classes of cell-surface receptors

have evolved that service the extracellular signaling needs

of multicellular organisms (Ben-Shlomo et al., 2003). These

classes include seven-transmembrane receptors, such as the

G-protein-coupled receptors (GPCRs); enzyme-linked recep-

tors, such as the receptor tyrosine kinases (RTKs) and receptor
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serine/threonine kinases (RS/TKs); ion-channel-linked recep-

tors; and two-component histidine kinase receptors. Of these

classes, the ion-channel-linked receptors and two-component

receptors appear in both prokaryotic and eukaryotic lineages,

suggesting that these forms of signaling are of truly ancient

origin (Koishi et al., 2004; Hoch, 2000; Stock et al., 2000).

However, a survey of eukaryotic-specific receptors found in

plants reveals an interesting divergence from the animal king-

dom in terms of receptor evolution. One surprising result from

the analysis of the complete genome sequence of Arabidopsis

thaliana is the apparent absence of receptor tyrosine kinases

and the presence of only two putative GPCRs (Meyerowitz,

2002; Perfus-Barbeoch et al., 2004; Liu et al., 2007). Instead,

the Arabidopsis genome contains an expansive set of receptor

serine/threonine kinases, known as receptor-like kinases

(RLKs), which are unique to the plant kingdom (Shiu and

Bleecker, 2001a; Shiu et al., 2004). RLKs comprise a more than

600-member gene family in Arabidopsis, representing approx-

imately 2% of the predicted protein coding genome. Like the

animal RTKs and RS/TKs, the majority of Arabidopsis RLKs ap-

pear to consist of an intracellular kinase domain, a single-pass

transmembrane helix, and an extracellular region containing

signaling-related sequence motifs (Cock et al., 2002). However,

phylogenetic analyses support their classification as a mono-

phyletic group that evolved separately from animal receptor

kinases (Shiu and Bleecker, 2001a).

Current experimental results from a variety of plant species

indicate that genes encoding RLKs are involved in a range of

environmental and developmental responses, including recog-

nition of pathogens (Xa21, FLS2, EFR) (Song et al., 1995;

Gomez-Gomez and Boller, 2000; Zipfel et al., 2006), symbionts

(NORK, SYMRK, NFR1, NFR5) (Endre et al., 2002; Stracke et al.,

2002; Madsen et al., 2003; Radutoiu et al., 2003), and self (SRK)

(Stein et al., 1991; Kachroo et al., 2001); perception of the

plant hormones brassinosteroid (BRI1, BAK1/AtSERK3, BRL1,

BRL3) (Li and Chory, 1997; Wang et al., 2001; Kinoshita

et al., 2005; Nam and Li, 2002; Li et al., 2002; Zhou et al.,

2004; Cano-Delgado et al., 2004) and phytosulfokine (PSKR)

(Matsubayashi et al., 2002), as well as abscisic acid responsive-

ness (RPK1) (Osakabe et al., 2005); cell proliferation (ER, ERL1,

ERL2) (Torii et al., 1996; Shpak et al., 2004); cell fate (CR4, EXS/

EMS1, SCM/SUB, SERK1, SERK2) (Becraft et al., 1996; Canales

et al., 2002; Zhao et al., 2002; Kwak et al., 2005; Chevalier

et al., 2005; Colcombet et al., 2005; Albrecht et al., 2005); cell

expansion (WAK2, WAK4) (Lally et al., 2001; Wagner and

Kohorn, 2001); meristem regulation (CLV1, BAM1-3, FON1,

TD1) (Clark et al., 1997; DeYoung et al., 2006; Suzaki et al.,

2004; Bommert et al., 2005); vascular development (PXY)

(Fisher and Turner, 2007); and, root and nodule growth

(HAR1, NARK, SUNN) (Nishimura et al., 2002; Searle et al.,

2003; Schnabel et al., 2005).

Collectively, RLKs represent a novel signaling innovation in

plants and, consequently, an excellent opportunity to under-

stand how extracellular signaling evolved and functions in

plants as opposed to animals. However, many basic questions

regarding their evolution and function remain unresolved. For

example, the sheer number of Arabidopsis RLKs and the

breadth of motifs found in their extracellular domains suggest

their involvement in a number of physiological processes. But,

the nature and range of these processes have yet to be iden-

tified for all but a handful of the more than 600 Arabidopsis

RLKs. Furthermore, phylogenetic analysis of the Arabidopsis

RLKs supports their classification into 43 subfamilies, which

correspond to the type and organization of motifs found in

their extracellular domains. For this reason, it has been hypoth-

esized that members of a given subfamily may respond to sim-

ilar types of signals. But, this hypothesis has yet to be tested.

Finally, the functional implications of the evolutionary expan-

sion of RLKs in the Arabidopsis genome remain unclear. The

large sizes of the RLK subfamilies may indicate functional

redundancies among its members. On the other hand, this

phenomenon may have allowed for functional divergences

to have evolved among its members, thereby allowing for

an expanded functional range of the RLKs as a whole.

To address these issues, we performed a systematic, large-

scale analysis of the transcriptional response of the Arabidop-

sis RLK gene family to a host of known environmental and

developmental stimuli in plants. Here, we report on the con-

ditions under which RLK gene expression is modulated, both

on an individual gene level and on the subfamily level. We also

profile similarities and divergences in gene expression among

the individual RLK genes, as well as within the framework of

the RLK subfamilies. Finally, we present a comparative analysis

of the associations between gene expression patterns and se-

quence distances and divergence rates in an attempt to under-

stand the evolutionary basis for the expansion and retention

of the RLK superfamily.

RESULTS

RLK Genes Respond to a Broad Set of Common Plant

Signaling Factors

As sessile, autotrophic organisms, plants are particularly reli-

ant on environmental factors to guide their physiological

and developmental programs. A number of studies have em-

braced the use of expression profiling to elucidate the molec-

ular components involved in the signaling pathways that

coordinate such programs (Nemhauser et al., 2006; Denby

and Gehring, 2005; Takahashi et al., 2004; Hazen et al.,

2003; Rabbani et al., 2003; Chen et al., 2002; Cheong et al.,

2002; Kreps et al., 2002). Additionally, studies of several of

the Arabidopsis RLKs have revealed gene expression changes,

as well as the emergence of RLK mutant phenotypes, under

specific stress elicitors and hormones (Shiu and Bleecker,

2001b; Osakabe et al., 2005; Verica et al., 2003; Sivaguru

et al., 2003; He et al., 1998). However, a comprehensive profile

of the transcriptional response of Arabidopsis receptor-like ki-

nase genes to known signaling factors had yet to be produced.

For this reason, we addressed whether, and to what extent,

Arabidopsis RLK genes are responsive to a host of well studied
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environmental and developmental signaling factors in plants.

Specifically, we used the Syngenta custom Arabidopsis Gene-

Chip array (sySYNG002a, Affymetrix, Santa Clara, California,

USA) to assay changes in RLK transcript levels after exposure

to 12 categories of treatments, representing three basic,

though complex, classes of plant physiological responses: abi-

otic stress, biotic stress, and hormonal/chemical. Collectively,

102 arrays representing 68 experiments were analyzed. The

12 specific treatments included cold (4�C), gravity (vertical

rotation), high light (1500 lmol m�2 s�1), osmotic stress

(200 mM mannitol), salt (100 mM NaCl), bacterial pathogens

(Pseudomonas syringae strains DC3000 and ES4326), fungal

pathogens (Botrytis cinerea, Erysiphe, Peronospora parasitica,

Phytophthora porri), viral pathogens (beet curly top hybrige-

minivirus, cauliflower mosaic virus, cucumber mosaic virus, oil-

seed rape mosaic virus, tobacco rattle virus, turnip mosaic virus,

turnip vein-clearing virus), abscisic acid (1 lM, 10 lM), glucose

(0.3%, 3.0%, 6.0%), auxin (0.1 lM), and jasmonic acid (45 and

50 lM). Given that stress, disease, and hormones have both im-

mediate and long-term effects on gene expression, many of

the treatments in this analysis represent data generated from

more than one time point, in an attempt to capture a larger

portion of the range of responses (Nemhauser et al., 2006;

Kreps et al., 2002). These treatments include cold, high light,

osmotic stress, salt, auxin, jasmonic acid, and most of the

pathogens. However, data from some treatments (glucose,

abscisic acid) represent changes seen at single time points un-

der differing concentrations. Supplemental Table 1 contains

a description of the individual experiments.

Based on our analysis, we identified responses equal to or

greater than a two-fold difference in expression from 582 of

the 604 Arabidopsis RLK genes in at least one of the 12 treat-

ments in our study (Figure 1A). Interestingly, of the 12 treatment

groups, the bacterial, fungal, and viral pathogens elicited the

largest proportion of differentially expressed RLK genes

(60%), compared to the abiotic stresses (18%) and hormone/

chemical treatments (22%) (Figure 1B). The hormone and chem-

ical treatments also had a relatively large number of responses,

in comparison with the abiotic stresses. In some treatment cate-

gories, individual RLK genes registered an up-regulated

Figure 1. Distribution of Differentially Expressed RLK Genes per Treatment Type.

Genes were classified as differentially expressed based on a two-fold-change or greater threshold.
(A) Total number of up-regulated and down-regulated RLK genes by treatment.
(B) Total number of differentially expressed genes by treatment.
(C) Proportion of up and down-regulated RLK genes by treatment. Proportions were calculated by scaling the total number of up-regulated
or down-regulated RLK genes per treatment by the total number of RLK genes and the number of experiments used in the given treatment:
number up/down-regulated genes/(number of all RLK genes 3 number experiments).
(D) Proportion of differentially expressed genes by treatment: number DE genes/(number of all RLK genes 3 number experiments).
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response in one experiment and a down-regulated response in

another. Inthecaseoftime-course-basedexperiments, this result

wouldsuggest thetemporalnatureofthetranscriptionalactivity

of the given RLK gene. However, in experiments in which the na-

ture of the treatment differed, such as with the pathogens, the

diverse transcriptional response would indicate a disparate role

in signaling activities related to the different treatments com-

prising that category. As a result of these dynamic responses,

thetotalofnumberofrespondentsforagiventreatment insome

cases was smaller than the summation of up-regulated and

down-regulated genes observed for that category of treatment.

Though it is tempting to speculate that the large number of

pathogenesis-related responses may be due to an evolutionary

process, the response proportions may be reflective of the pro-

portion of experiments performed per treatment class: 61%

biotic stresses, 14% abiotic stresses, and 25% hormone/chem-

ical. To better understand this distribution, we also calculated

the number of differentially expressed RLK genes per treat-

ment, scaled by the number of experiments used in each treat-

ment and the number of genes analyzed (Figure 1C and 1D).

Based on this analysis, relatively large numbers of differen-

tially expressed RLK genes were registered for the osmotic

stress, abscisic acid, bacterial pathogen, cold, and glucose

treatments. Table 1 lists the RLK genes with the top increased

and decreased expression levels per treatment.

The results of the absolute and scaled analyses indicate that

a large number of RLK genes are responsive to known signal-

ing factors, and that the responses cover a range of plant phys-

iological programs, including the response to abiotic and

biotic stresses, as well as hormone and chemical-related pro-

cesses. Given that mutant phenotypes in Arabidopsis often

present themselves only under the appropriate, functionally

relevant screening conditions, the specific treatments and

RLK gene responses identified here serve as a resource for

the targeted screening of individual RLK genetic mutants.

The full list of differentially expressed RLK genes for all 68

experiments can be viewed in Supplemental Table 2. For a de-

tailed description of the data analysis, see Methods.

Individual RLK Genes Respond to Multiple Treatments

Previously, it had been discovered that individual RLKs might

be responsive to more than one signaling factor and thereby

participate in multiple signaling pathways (Johnson and

Ingram, 2005; Morris and Walker, 2003; Montoya et al.,

2002). To investigate this phenomenon, we calculated the

number of treatments to which individual RLK genes were dif-

ferentially expressed, as well as the overlap in responses

among the different conditions. First, we looked at the distri-

bution of the number of overall responses registered by indi-

vidual RLK genes across the 12 treatments (Figure 2A). Of the

604 RLK genes, 22 (4%) displayed no response to any of the

experimental conditions tested, and 43 (7%) displayed an in-

crease or decrease in expression to exactly one condition. The

remaining number of respondents displayed an increase or de-

crease in expression to more than one condition. We also

found a large number of genes that showed an increase or de-

crease in expression to more than one condition when looking

at up-regulated responses and down-regulated responses sep-

arately (Figure 2B).

These results support the idea that single RLK genes may be

involvedinseveralphysiologicalprocessesor inacommondown-

stream process initiated by more than one condition. To identify

those conditions under which individual RLK genes display mul-

tiple responses, we performed a Venn diagram-based analysis.

Specifically, we looked for relationships among sets of respond-

ing RLK genes under conditions that are known to produce re-

latedphysiological responses inplants (Figure3A). In looking at

groups of three conditions, we detected only small overlaps

among the abiotic and hormone/chemical groupings. For ex-

ample, abscisic acid, glucose, and osmotic stress had no over-

lapping respondents with increased expression and five

shared respondents (1%) among those with decreased ex-

pression levels. Similarly, among the hormones abscisic acid,

auxin, and jasmonic acid, one respondent (0.5%) had in-

creased expression levels to all three treatments, and two

(1%) had decreased expression. Cold, salt, and osmotic stress

had no overlapping respondents with increased expression,

and only one (0.5%) with decreased expression. However,

the bacterial, fungal, and viral pathogens showed larger

proportions of overlap with 111 (21%) shared respondents

with increased expression levels and 83 (18%) with de-

creased levels.

Comparisons of sets of two treatments that are known to

induce related physiological processes revealed more overlaps

in RLK gene responses. We found that of the RLK genes with

increased expression levels to abscisic acid and glucose, 38

(28%) of them responded to both. For those RLK genes with

decreased expression levels to either glucose or abscisic acid,

68 (42%) displayed decreased levels for both. Gravity and

auxin had nine (6%) shared respondents with increased ex-

pression, and nine (8%) with decreased expression. Abscisic

acid and osmotic stress are also known to have cooperative

effects in plant development (Zhu, 2002). Interestingly, we

found that only one of the RLK genes (0.9%) displayed in-

creased expression levels under both osmotic stress and absci-

sic acid. For genes with decreased expression levels to either

abscisic acid or osmotic stress, seven (6%) had responses to

both conditions. Plant responses to osmotic stress, salt stress,

and cold are known to be intricately related (Mahajan and

Tuteja, 2005). Surprisingly, osmotic stress and salt stress had

no overlapping increased response, and an overlap of three

(1%) RLK genes with decreased expression levels. Salt stress

and cold had more shared responses, with six (10%) RLK genes

with increased expression levels and 27 (19%) with decreased

levels. Cold and osmotic stress had three shared respondents

(5%) with increased expression, and 16 (8%) with decreased

expression. Given the cross-talk that can occur in the signaling

pathways involving abscisic acid, salt, and osmotic stress, the

little overlap seen here may indicate that these genes are par-

titioned into condition-specific responses outside of those
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Table 1. Top Up-Regulated and Down-Regulated RLK Genes per Treatment.

Treadment Accession Subfamily Signal log Radio Treatment Accession Subfamilly Signal log Radio

Abscisic Acid AT3G05140 RLCK VI 2.99 Auxin AT1G21250 WAKL 4.00

AT3G47580 LRR XII 2.90 AT2G19190 LRR I 2.99

AT3G68420 CR4L 2.64 AT2G13800 LRRII 2.83

AT3G51990 CR4L 2.45 AT1G21240 WAKL 2.57

AT2G25220 RLCK X 2.29 AT4G23180 DUF26 2.48

AT4G02410 L-LECTIN -3.75 AT3G51740 LRR III -2.61

AT4G11460 L-LECTIN -3.67 AT3G45430 L-Lectin -2.07

AT4G11460 DUF26 -3.20 AT5GD1060 RLCK II -2.03

AT1G15110 WAKL -2.95 AT4G32000 RLCK -2.00

AT5G02070 WAKL -2.69 AT5G54380 CrRLK1L-1 -1.99

Bacterial AT1G79680 WAKL 5.99 Cold AT3G59350 RLCK VIII 4.50

AT5G25930 LRR XI 5.18 AT5G61350 CrRLK1L-1 3.20

AT4G25390 RLCK XI 4.91 AT5G60900 SD-2 2.59

AT5G46080 UC 4.69 AT4G27290 SD-1 2.34

AT1G51370 SD 1 4.11 AT5G66790 WALK 2.19

AT4G39400 LRR X -4.11 AT5G03140 L-Lectin -3.00

AT2G30740 RLCK VIII -2.89 AT4G11460 DUF26 -2.70

AT5G51770 RLCK XI -2.88 AT4G04960 L-Lectin -2.63

AT4G08850 LRR XII -2.40 AT1G79670 WAKL -2.61

AT3G03770 LRR VI -2.34 AT4G11500 DUF26 -2.59

Gravity AT5G03140 L-LECTIN 1.93 High Light AT1G21250 WAKL 2.02

AT1G79680 WAKL 1.84 AT1G51550 SD-1 1.45

AT1G28390 CR4L 1.73 AT1GD7560 LRR I 1.41

AT1G51620 LRR I 1.71 AT4G00960 DUF26 1.38

AT3G53840 WAKL 1.64 AT5G81350 CrRLK1L-1 1.35

AT1G55610 LRR X -2.05 AT3G47580 LRR XII -2.99

AT3G28450 LRR X -1.96 AT5GD3140 L-Lectin -1.98

AT1G25390 LRK10L-1 -1.96 AT1G56720 TAXL -1.93

AT2G41890 SD-3 -1.92 AT1G51940 LysM -1.91

AT4G11890 DUF26 -1.71 AT5G37790 RLCK VI -1.85

Salt Strees AT5G53890 LRR X 2.49 Viral AT4G39110 CrRLK1L-1 4.99

AT4G02420 L-Lectin 1.48 AT1G76370 RLCK VII 4.85

AT5G35960 RLCK VI 1.47 AT3G02810 RLCK VII 4.78

AT1G15120 WAKL 1.38 AT2G07040 LRR III 4.70

AT3G08870 L-Lectin 1.25 AT4G11890 DUF26 4.31

AT3G57710 RLCK III -2.02 AT1G65800 SD-1 -3.36

AT4G11460 DUF26 -1.91 AT2G05940 RLCK VII -3.30

AT1G11330 SD-1 -1.75 AT4G23290 DUF26 -3.15

AT1G17540 RLCK IX -1.70 AT4G23300 DUF25 -2.70

AT1G51850 LRR I -1.69 AT4G23180 DUF25 -2.70

Furgal AT5G10250 RLCK VI 4.24 Glucose AT3G24240 LRR XI 3.14

AT1G79680 WAKL 4.06 AT3G58690 Extensin 2.95

AT4G21390 SD-1 3.74 AT5G20480 LRR XII 2.73

AT4G04490 DUF26 3.66 AT2G33580 LysM 2.67

AT1G81370 SD-1 3.59 AT5G47070 RLCK VII 2.54

AT3G49670 LRRXI -4.01 AT3G49570 LRR XI -4.49

AT5G67280 LRR III -2.68 AT3G28040 LRR VII -4.09

AT1G30570 CrRLK1L-1 -2.58 AT1G48480 LRR III -3.08
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cross-talk networks. For example, it is known that the plant re-

sponse to osmotic stress involves multiple signaling pathways,

some of which are abscisic acid-dependent and some of which

are abscisic acid-independent (Zhu, 2002). However, it also pos-

sible that temporal and tissue-specific differences may be

influencing these results.

Among the biotic stress-related treatments, bacterial and vi-

ral pathogens shared more respondents than either bacterial–

fungal pathogens or viral–fungal pathogens. The bacterial and

viral pathogens had 231 (45%) shared respondents with in-

creased expression levels, and 167 (44%) with decreased ex-

pression. In contrast, bacterial and fungal pathogens had

157 (32%) and 145 (34%) with increased and decreased expres-

sion levels, respectively, while fungal and viral pathogens had

146 (39%) increased and 128 (32%) decreased. Plant resistance

to fungal pathogens is known to be related to jasmonic acid

signaling (Kunkel and Brooks, 2002). Here, we found that fun-

gal and jasmonic acid treatments produced 19 shared respond-

ents (8%) with increased expression levels, and 20 shared

respondents (7%) with decreased expression.

Overall, in looking at the three major classes of treatments—

abiotic stress, biotic stress, and hormones/chemicals—we found

that 48 RLK genes (9%) with increased expression levels and 83

(16%) with decreased expression levels were shared among the

three (Figure 3B). While the results presented here have high-

lighted overlaps seen in responses to related treatments, it

should be noted that this analysis additionally reveals those

groups of RLK genes with distinct responses to specific treat-

ments. Supplemental Table 3 lists all up-regulated and down-

regulated RLK genes per treatment.

RLK Subfamilies Display Wide Signal Coverage

Molecular phylogenetic analysis of the amino acid sequences

encoding the Arabidopsis RLK kinase domains has led to the

classification of 43 RLK subfamilies plus one grouping of un-

classified RLKs (UC), with most subfamilies also bearing distinct

types and organization of sequence motifs in their extracellu-

lar domains (Shiu and Bleecker, 2001a). An appealing hypoth-

esis is that each subfamily may service a specific, related set of

physiological responses in plants (Shiu and Bleecker, 2001b). To

investigate this question, we grouped the results of the expres-

sion analysis by subfamily and compared them across treat-

ments (Figure 4A). Note that we also counted the responses

found among the unclassified RLKs.

The mosaic plot depicted in Figure 4A is based on the num-

ber of differentially expressed RLK genes for a given subfam-

ily under the specified treatment, scaled by the number of

genes in the subfamily and the number of experiments re-

lated to the treatment. The area of each tile in the plot rep-

resents the joint distribution of differentially expressed genes

for a given combination of subfamily and treatment. The

lengths of each tile indicate the marginal distribution of dif-

ferentially expressed genes per subfamily (vertical length) or

treatment (horizontal length). Here, we find that the bacte-

rial pathogen and abscisic acid treatments induced responses

across all subfamilies. To a lesser extent, the fungal and viral

pathogens, as well as glucose, had near widespread effects. It

is also interesting to note the amount of distortion in the tiles

for the abiotic stress-related treatments and for jasmonic

acid, which suggests associations between subfamilies and

these treatments in terms of the number of differentially

expressed members.

Figure 4B depicts the proportion of each subfamily’s total

number of responses according to the three major classes of

treatments: abiotic stress, biotic stress, and hormones/chemi-

cals. The plot in Figure 4B reveals that, in general, a slightly

larger proportion of each subfamily’s responses are found un-

der abiotic stress and hormone/chemical treatments, with

Table 1. Continued

Treadment Accession Subfamily Signal log Radio Treatment Accession Subfamilly Signal log Radio

AT1G28440 LRR XI -2.34 AT1G28440 LRR XI -2.93

AT5G16590 LRR III -2.31 AT4G20270 LRR XI -2.90

Jasmonic Acid AT3G05140 RLCK VI 2.21 Osmotic Strees AT4G27300 SD-1 3.82

AT3G47580 LRR XII 2.18 AT1G51850 LRR I 3.80

AT3G59420 CR4L 1.87 AT1G51800 LRR I 3.28

AT3G51990 CR4L 1.77 AT4G23290 DUF26 2.56

AT2G25220 RLCK X 1.73 AT4G11460 DUF26 1.94

AT4G02410 L-Lectin -1.93 AT4G11890 DUF26 -3.67

AT4G28350 L-Lectin -1.83 AT5G24080 SD-2 -3.62

AT4G11460 DUF26 -1.53 AT1G69790 RLCK VII -2.85

AT1G15110 WAKL -1.47 AT3G59350 RLCK VIII -2.73

AT5G02070 WAKL -1.44 AT1G35710 LRR XII -2.46

The signal log2 ratio represents a log2 transformation of the fold-change difference between treated and control signal readings exhibited by the
designated gene under a given treatment category. Each treatment category comprised multiple experiments, with the exception of the osmotic
stress assay. The top respondents listed reflect the highest signal log2 ratios registered by any experiment within a given treatment category.
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a smaller proportion induced by the biotic stress conditions.

However, for certain subfamilies, such as PERKL, SD-2, and

Thaumatin, the effects were more evenly distributed.

In absolute terms, the number of responses varied for each

subfamily, with the DUF26 and LRR III subfamilies each regis-

tering the largest number at 207, while the C-Lectin and SD-3

subfamilies each had the smallest number at six. We found that

overall, every RLK subfamily displayed responses to a broad

range of treatments, with the smallest number of treatments

being five (the RKF3L subfamily) and 13 of the subfamilies

showing at least one differentially expressed member to all

12 of the treatments. Based on these results, it is clear that each

RLK subfamily contains members that are responsive to differ-

ent types of signals, as opposed to a specific type of treatment.

RLK Subfamilies Exhibit Different Levels of Divergence in

their Expression Patterns

In the previous analysis, we found that each RLK subfamily had

members that were differentially expressed under different

types of treatments. Next, we investigated the extent to which

expression profiles diverge or overlap among the RLK genes,

particularly within the 43 subfamilies. Dissimilar expression

patterns may be indicative of functional divergences among

closely related RLK members, while similar expression patterns

may indicate the presence of functional overlaps. Such redun-

dancies have been reported for several of the RLKs (Shiu and

Bleecker, 2001b; Johnson and Ingram, 2005; Dievart et al.,

2003). For example, three members of the LRR XIII subfamily

have been shown to have functional overlaps through the

analysis of a triple mutant (Shpak et al., 2004). The presence

of such overlaps was also offered as a plausible explanation

for the difficulty often encountered in generating identifiable

phenotypes in single loss-of-function RLK mutants.

To analyze whether expression patterns appear to be con-

served or divergent within each subfamily, we measured the

distance between RLK gene expression profiles across the

arrays used in our study in pairwise fashion, using a metric

based on the Pearson correlation coefficient (r) (see Methods).

The final gene expression distance for a subfamily represents

the median of the pairwise distances (dr) among all of its mem-

bers, using a normalized scale of 0 to 1, with 1 being most dis-

tant. Based on this analysis, we found that the level of

expression divergence varied widely among the RLK subfami-

lies (Figure 5). The largest divergence, seen in the RLCK XI sub-

family (median dr = 0.55), was approximately three times that

of the smallest divergence, registered by the CrRLK1L-2 sub-

family (median dr = 0.18). Note that these results apply only

to those subfamilies with two or more members and therefore

exlude the C-Lectin and SD-3 subfamilies.

However, we also found that, for the most part, the majority

of subfamilies exhibited a broad range of distances among

their expression profiles, which we calculated by subtracting

the lowest pairwise dr value from the highest for each subfam-

ily. The smallest dr range was 0.10, found in the RLCK X sub-

family, and the CrRLK1L-1 subfamily had the largest dr

range at 0.75. The average dr range for all subfamilies was

0.48. To ensure that the subfamily expression distances were

not an artifact of membership size, we checked the correlation

of the median expression distance of each subfamily to

its membership size and found no significant correlation

(r = 0.05).

We also looked at the expression profile distances among

the three LRR XIII subfamily members with known functional

overlaps (Shpak et al., 2004). We found that their expression

profiles were indeed similar, with pairwise distances of

Figure 2. Distribution of Number of Treatments in which a Given
RLK Gene Is Differentially Expressed.

An RLK gene is said to be differentially expressed for a given treat-
ment if it is differentially expressed at the two-fold-change or
greater level in at least one experiment for this treatment. Note
that experiments within a treatment tested for responses to a range
of treatment-related conditions and are not experimental repli-
cates.
(A) Distribution of total number of treatments in which a given RLK
gene is differentially expressed. Twenty-two (4%) of the RLK genes
did not exhibit a change in expression level to any treatment while
43 RLK genes (7%) responded to exactly one treatment.
(B) Distribution of the number of treatments in which a given RLK
gene is differentially expressed separated into up-regulated and
down-regulated responses.
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dr = 0.18, dr = 0.21, and dr = 0.32 among the three. In a rank-

ing of all distances generated in our analysis from shortest to

longest, these distances fell into the 97th, 96th, and 85th percen-

tiles, respectively. Supplemental Dataset 1 contains a list of all

the pairwise distances between subfamily members for each

subfamily.

RLK Expression Profiles Transcend

Subfamily Classifications

The broad range of distances found among the expression pro-

files within each subfamily led us to ask whether associations

existed between expression profiles of different subfamilies.

On a functional level, interactions between different

Figure 3. Comparison of Treatment Types with Overlapping Sets of Differentially Expressed RLK Genes.

(A) Distribution of overlaps in physiologically related treatment types.
(B) Distribution of overlaps according to the three major treatment classes: abiotic stress, biotic stress, and hormone/chemical.
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subfamily members have been shown to occur, for instance,

with members of the LRR II and LRR X subfamilies (Nam and

Li, 2002; Li et al., 2002). To perform this analysis, we used

the subfamily classification scheme as an a priori clustering

of the expression profiles and calculated the silhouette widths

(si) for all members of each subfamily (Figure 6A) (Kaufman

and Rousseeuw, 1990). In this case, the silhouette width meas-

ures how closely associated an individual expression profile is

to those found in its own subfamily, compared to profiles from

other subfamilies.

Figure 4. Differentially Expressed RLK Genes by Subfamily and Treatment.

Area of tile indicates joint distribution of differentially expressed genes by subfamily and treatment. Tile width represents marginal dis-
tribution of differentially expressed genes per treatment or treatment class. Tile length reflects marginal distribution of differentially
expressed genes per subfamily.
(A) Proportion of differentially expressed genes per subfamily and treatment. Tile area calculated by taking the number of differentially
expressed genes for a given subfamily under a given treatment and scaling by the subfamily size and number of experiments within the
treatment category: number DE genes/(number gene members 3 number experiments).
(B) Proportion of differentially expressed RLK genes per subfamily and major class of treatment. Tile area calculated by taking the number of
differentially expressed genes exhibited by a subfamily and scaling by the subfamily size and number of experiments falling under the major
treatment class of abiotic stress, biotic stress, or hormone/chemical: number DE genes/(number gene members 3 number experiments in
treatment class).
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Our results show that the majority of RLK genes had asso-

ciations outside of their own subfamily, as represented by

the negative silhouette width scores in Figure 6A. Further-

more, the silhouette width average for the entire a priori clus-

tering was si
D = –0.26. These results show that the expression

profiles do not cluster well according to subfamily. For the

most part, each subfamily had widely disparate expression pro-

files, so much so that they appear to have associations outside

of their subfamily to a greater degree than within their own

subfamily. This result is consistent with the notion that the ac-

tivity of the genes in each subfamily are related to divergent

physiological processes, as suggested in Figure 4A and 4B.

Next, we attempted to separate the data into groups of

conserved expression profiles, regardless of subfamily member-

ship. To do so, we used a clustering approach called Partitioning

AroundMedoids (PAM),and calculatedthe silhouette widths for

the resulting cluster structure. PAM clusters data by first identi-

fying thebestKmedoids in thedata, and thenassigning allother

observations to its nearest medoid (Kaufman and Rousseeuw,

1990). In this case, we used PAM to find the best 43 clusters

(K = 43), matching the number of RLK subfamilies minus the un-

classified grouping. In the resulting cluster structure, we found

no support for the PAM-derived clusters based on an overall sil-

houette width average of si
D = 0.09 (Figure 6B). However, two

interesting points emerged from the silhouette plot of the

PAM clustering. First, the composition of each cluster was typi-

callyaheterogeneousmixofsubfamily types.This result suggests

the possibility of widespread interactions among different RLK

genes. Second, the results show that, for the conditions tested,

the responses to a particular treatment may involve the activity

of an assortment of RLK genes.

We also tested a range of cluster numbers (K = 2 to K = 50)

in our PAM analysis but the results indicated that no ideal

number could produce silhouette width measures that

strongly supported the clustering (si
D . 0.5) (Supplemental

Figure 1). Finally, we used the Hierarchical Ordered Partition-

ing and Collapsing Hybrid (HOPACH) algorithm as a second at-

tempt to cluster the expression profiles but found a similar lack

of support for the HOPACH clustering (25 clusters, si
D = 0.06,

Supplemental Figure 2) (van der Laan and Pollard, 2003).

Given that our analysis found a high level of associations be-

tween expression profiles from different subfamilies, as seen in

Figure 6A, we used hierarchical clustering to view subfamily

relationships according to the average expression profile dis-

tances among them (Figure 7). The clustering itself was based

on average linkage between subfamilies and resulted in a den-

dogram with three major clusters. Interestingly, nine of the 14

LRR subfamilies are found in the first cluster, and the 10 RLCK

subfamilies appear to be distributed across the clusters. Taken

together, the clustering and silhouette width analyses reveal

a high levelofdiversity in the RLKtranscriptional response,with

complex associations found among different groupings of pro-

files and across RLK subfamilies. Supplemental Dataset 2 con-

tains a list of gene expression distances across subfamilies, as

Figure 5. Pairwise Gene Expression Distances (dr) by Subfamily.

Expression distances were calculated based on the Pearson correlation coefficient (r) for each pairwise comparison of expression vectors
using the maximum r value found across all subfamilies as a normalization factor: dr = 1 – (rij/max(r)), where i and j represent the expression
vectors being compared. Markers within boxes represent median dr values for each subfamily. Notches along boxes that do not overlap are
evidence the medians differ for the given subfamilies. Box widths reflect the number of pairwise calculations performed for a given sub-
family. Box lengths represent interquartile ranges. Ranges of each plot cover observations that extend to 1.5 times the interquartile range.
Outliers for each subfamily are designated as individual points. Note that the single-member subfamilies, C-Lectin and SD-3, are excluded.
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well as a summary of the clustering and silhouette width anal-

yses, including cluster associations, nearest neighboring clus-

ters, and silhouette width measures for each RLK.

Opposing Trends in Sequence and Expression Distance

among the RLK Subfamilies

To investigate whether there was a sequence basis for the lev-

els of expression profile divergence seen within each RLK sub-

family, we asked whether subfamily members with similar

sequences exhibited similar expression profiles, and, con-

versely, whether less similar sequences had more divergent ex-

pression profiles. In order to answer this question, we

performed all-against-all pairwise alignments of RLK amino

acid sequences, using ClustalW and the Gonnet series of scor-

ing matrices (Thompson et al., 1994; Gonnet et al., 1992). From

each pairwise alignment, we calculated a distance based on

Figure 6. Clustering and Silhouette Width Analysis of RLK Expression Profiles.

Silhouette plots indicate strength of expression profile cluster structures derived from (A) an a priori clustering based on subfamily clas-
sification and (B) Partitioning Around Medoids (PAM) clustering with the number of clusters (K) = 43. Each bar represents the silhouette
width of an individual expression profile. Bar widths indicate strength of assignment of a given expression profile to its designated cluster,
with larger values representing better classification. Silhouette width values for a cluster (si

C) represent how well a cluster is separated from
neighboring clusters, with values closer to 1 indicating better separation. The silhouette width value for the entire cluster structure (si

D)
reflects the strength of support for the overall clustering of the data, with larger values reflecting better support. In (A), subfamilies are
color-coded as designated. In (B), expression profiles from different subfamilies within a given cluster are represented by different colors.
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the normalized alignment score. As with the expression profile

distances, the sequence distances (dseq) fall between 0 and 1,

with 1 being most distant. Overall, the median sequence dis-

tances for all within-subfamily comparisons varied (Figure 8A).

Next, for each subfamily, we extracted the sequence and ex-

pression profile distances for all within-subfamily pairwise

comparisons and calculated the correlation between the

two sets of values. We found that of the 38 subfamilies, 20

(53%) exhibited a correlation (r > 0.2 or r < –0.2) between se-

quence similarity score and expression profile distance (Figure

8B). Note that five subfamilies (C-Lectin, CrRLK1L-2, RKF3L,

SD-3, and URK I) had two or fewer members and could not

be included in the analysis. In addition, we did not include

the unclassified RLKs.

Within these 20 subfamilies, we found two distinct, though

vastly different, sets of results. Sixteen of the subfamilies

exhibited a positive correlation (r > 0.2), indicating that

the closer the sequence similarity among subfamily members,

the more conserved their expression profiles. Perhaps more

intriguingly, four of the subfamilies displayed a negative cor-

relation (r < –0.2) between sequence and expression. In this

case, the more similar the sequences within the subfamily, the

more distant their expression profiles. We also checked

whether the correlation between sequence distance and ex-

pression profile distance was affected by subfamily size and

found no such correlation (r = –0.03). In addition, we found

no overall correlation between sequence distance and ex-

pression profile distance for the RLK superfamily as a whole

(r = –0.02).

RLK Subfamilies Demonstrate Signs of Differential

Evolution of Sequence and Expression

Based on our analysis of amino acid sequence and expression

profile distances, it appeared that different evolutionary

forces might be related to the divergence of expression pat-

terns seen within the RLK subfamilies. For this reason, we for-

mally investigated whether a link existed between RLK

sequence evolution and expression divergence. Recent studies

have paired molecular phylogenetic methods with expression

profiling to investigate the evolutionary and functional impli-

cations of gene expression divergences (Nuzhdin et al., 2004;

Akashi, 2001; Wagner, 2000). In particular, studies have looked

at measures of sequence divergence and selective pressure

among both orthologous and paralogous genes and com-

pared them to similarities seen in their expression patterns,

in order to make initial assessments of functional evolution

among the sequences (Good et al., 2006; Oakley et al., 2005;

Lemos et al., 2005).

In our case, to discern whether evolutionary events might

have had an effect on RLK subfamily expression profiles,

we first attempted to establish whether members of the sub-

families displayed signs of selective pressure. To do so, we

calculated the ratio of non-synonymous-to-synonymous sub-

stitution rates, the so-called dN/dS ratio, among the sequences

using the method of Yang and Nielsen (2000). The dN/dS ratio

(x) provides a measure of whether the molecular sequences in

question appear to be under negative (purifying) selection or

positive (diversifying) selection. For each subfamily, we created

Figure 7. Average Linkage Hierarchical Clustering of RLK Subfamilies Based on Average Linkage Gene Expression Distance.

Pearson correlation coefficient (r) was used as the basis for a distance measure between gene expression profiles. Branches represent the
average gene expression profile distance between each clustering of subfamilies. Initial distances between each subfamily were based on
the average expression profile distances between all members of each subfamily being compared. The scale represents the expression
profile distance calculated as 1 – r, normalized to fit in the 0–1 range.
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multiple amino acid sequence alignments of its members, and

used these alignments to guide the alignment of their coding

DNA (see Methods). From the aligned DNA sequences, we cal-

culated the dN/dS ratios for all pairwise comparisons within

each subfamily using the yn00 program in PAML (Yang,

1997). We then calculated the median dN/dS ratio for each sub-

family, as well as the range of all ratios found within each sub-

family (Figure 9A).

Based on this analysis, we found that none of the subfamilies

as a whole showed signs of positive selection (xmed . 1). In fact,

themedianvalues forall subfamilieswere less thanxmed = 0.40,

indicating that the majority of the sequences were under

Figure 8. Correlation between Sequence Distances and Expression Distances by Subfamily.

(A) Pairwise sequence distances by subfamily. Distances between amino acid sequences within a subfamily (dseq) were based on pairwise
alignment scores (sij) using the Gonnet substitution matrices, with the maximum score (max(sij)) found across all subfamilies as a normal-
ization factor. Distances were calculated as: dseq = 1 – (sij/max(s)). Boxes represent the interquartile range with medians for each subfamily
indicated by marks. Ranges extend to data that fall within 1.5 times the boxed interquartile range, with outliers marked as individual points.
Box widths represent the proportion of observations within a given subfamily and notches that do not overlap among subfamilies provide
evidence of differences in their medians. Note that the single-member subfamilies C-Lectin and SD-3 are excluded.
(B) Pearson correlation between sequence distance and expression distance (r(dseq, dr)) for each pairwise comparison of subfamily members
within each subfamily. Final r value for a subfamily represents the average of all observations within that subfamily. Subfamilies with fewer
than three members (C-Lectin, CrRLK1L-2, RKF3L, SD-3, and URK I) were excluded.
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varying degrees of negative selection. Interestingly, one of the

subfamilies, LRR III, contained 13 members that showed signs of

positive selection (x . 1), although the median ratio for the

subfamily was xmed = 0.37. Similarly, the DUF26 subfamily

had a pair of members with a ratio nearing x = 0.98, where

x = 1 is often interpreted as selectively neutral conditions.

Although the RLK subfamilies appear to have evolved under

negative selection, variations in the strength of selection

might have had an impact on expression divergence within

each subfamily. For this reason, we tested whether the degree

of selective pressure as measured by x had any relationship to

the amount of expression divergence seen within each

Figure 9. Correlation between dN /dS (x) Ratios and Expression Distances (dr) by Subfamily.

(A) Pairwise dN/dS ratios by subfamily. Ratios of non-synonymous-to-synonymous substitution rates (dN/dS) were calculated based on align-
ments of coding sequences among all members within each subfamily. Boxes represent the interquartile range with medians for each sub-
family indicated by marks. Ranges extend to data that fall within 1.5 times the boxed interquartile range, with outliers marked as individual
points. Box widths represent the proportion of observations within a given subfamily and notches that do not overlap among subfamilies
provide evidence of differences in their medians. Note that the single-member subfamilies C-Lectin and SD-3 are excluded.
(B) Correlation betweendN /dS ratios and expression distances by subfamily. Pairwise dN /dS ratios were normalized using the maximum value
found across all subfamilies and correlated with matching pairwise comparisons of expression distances for all members within each sub-
family. Final r value for a subfamily represents the average of all observations within the subfamily. Subfamilies with fewer than three
members (C-Lectin, CrRLK1L-2, RKF3L, SD-3, and URK I) were excluded.
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subfamily. To test for this, we calculated the correlation be-

tween all pairwise dN/dS ratios and their corresponding pair-

wise expression profile distances within each subfamily

(Figure 9B). Of the 38 subfamilies analyzed, we found that

14 (37%) had correlations of either r > 0.2 or r < –0.2. Eight

of the 14 subfamilies (Extensin, LRK10L-1, LRR VII, LRR XII, LRR

XIII, RLCK IV, RLCK XI, and Thaumatin) show a positive corre-

lation between dN/dS and their expression divergence. That is,

the more relaxed the negative selection, the more divergent

their expression profiles. In contrast, the remaining six subfa-

milies (LRR IV, LRR VIII-2, LRR IX, RLCK I, RLCK III, and SD-1)

show a negative correlation in which sequences under greater

negative selective pressure had greater divergence in their

expression profiles.

Next, we used the synonymous substitution rate (dS) as

a measure of divergence time found among RLK subfamily

members, and calculated the correlation of this measure with

expression divergence (Figure 10A and 10B) (Gu et al., 2002).

We found that of the 38 subfamilies, 11 (29%) had correlations

of either r > 0.2 or r < –0.2. Seven of the subfamilies (LRK10L-

1, LRR I, LRR II, LRR VIII-2, LRR IX, RLCK I, and RLCK III) had a pos-

itive correlation between divergence time and expression

divergence among its members. Four of the subfamilies (LRR

VII, LysM, RLCK IV, and RLCK X) registered a negative correla-

tion between divergence time and expression divergence. We

also checked to ensure that subfamily size did not influence

the correlation between dN/dS and expression divergence

and found no such effect (r = –0.01), and found only a slight

association (r = 0.10) between dS and family size.

Finally, to look at the general trends in the relationships

amongdivergencetime(dS), sequencedistance(dseq),expression

distance (dr), and selective pressure (dN/dS) at the subfamily level,

we plotted the median values for each subfamily in a four-way

scatter plot matrix (Figure 11). Measured at the level of the sub-

family, it appeared that divergence time and sequence distance

had a very weak association (r = 0.12), as did sequence distance

and expression distance (r = 0.12). Divergence time and expres-

sion distance as a whole appeared unrelated (r = –0.03), as did

selective pressure and expression distance (r = 0.05). Finally,

sequence distance and selective pressure had a positive associa-

tion (r = 0.35), and, as expected, divergence time and selective

pressure were negatively associated (r = –0.63).

DISCUSSION

Signaling-Related Changes in the RLK Transcriptome

The genome of Arabidopsis thaliana contains more than 600

receptor-like kinase genes, the great majority of which have

yet to be investigated experimentally. Here, we have created

a detailed expression profile of 604 receptor-like kinase genes

after exposure to a cross-section of major developmental and

environmental signaling factors in plants, including abiotic

stresses, biotic stresses, and hormones. Our results show that

RLK gene activity is regulated at the transcriptional level in re-

sponse to many of these factors and suggest that a great num-

ber of RLKs may be functionally relevant components of

a broad spectrum of essential signaling processes in plants. Fur-

thermore, these results specifically identify those signaling

conditions that elicit changes in RLK transcriptional levels

on a gene-by-gene basis, as well as similarities and divergences

in expression among closely related RLK genes.

These results are significant in that, prior to the detection of

the first receptor-like kinase in maize, it was believed that the

primary mechanism for signaling in plants was the symplastic

transit of molecules through the intracellular tubules known

as plasmodesmata (Dievart and Clark, 2004; Walker and Zhang,

1990). The discovery of RLKs as large gene families in land

plants changed this conception and provided a new focus

for research into plant extracellular signaling (Shiu and

Bleecker, 2001a). However, although ongoing experimental

analyses have bolstered the hypothesis that RLKs are involved

in signaling pathways that service fundamental plant physio-

logical processes, breakthroughs in identifying these pathways

have been limited to a relatively small subset of individual

RLKs. By taking a functional genomics approach to investigate

this hypothesis, we have generated a large body of initial ev-

idence as to RLK functionality in Arabidopsis for the complete

genomic inventory of RLKs. Additionally, the preponderance

of changes that we found in the RLK transcriptome further

supports the widely held belief that RLKs are major contribu-

tors to the processing of a vast array of plant developmental

and environmental cues.

Our results also extend the initial observation that transcrip-

tional regulationmay serveas an important mechanismfor con-

trolling RLK-mediated responses. Previous reports have

implicated post-translational events at the biochemical and cel-

lular level as possible forms of regulating RLK activity. For in-

stance, receptor oligomerization and hyperphosphorylation

have been demonstrated in several of the well studied RLKs, in-

cluding BRI1, BAK1, and SYMRK (Nam and Li, 2002; Li et al.,

2002; Wang et al., 2005; Yoshida and Parniske, 2005). In addi-

tion, receptor internalization and dephosphorylation were

exhibited by ACR4, SERK3, and BRI1 (Russinova et al., 2004;

Gifford et al., 2005). A third possible form of regulation was

speculated to occur at the transcriptional level. Initial evidence

demonstrated clear changes in the gene expression of several

RLKs in response to signaling factors such as abscisic acid, sali-

cylic acid, oxidative stress, and light (Shiu and Bleecker, 2001b;

Becraft, 2002). Our results greatly expand on this evidence and

indicate that transcriptional regulation may be an important

form of controlling the activity of a large number of RLK genes

in a wide variety of signaling events. As an obvious advance-

ment of this result, it will be critical to establish the relationship

between the transcriptional response of a given RLK gene and

the functional response provided by its gene products.

RLKs and the Capacity for Complex Signaling

Our study also revealed that the transcriptional levels of many

RLK genes are affected by more than one signaling factor.
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These results support current models of RLK versatility that

have been reported recently. In one study, an RLK homologue

in tomato, tBRI1/SR160, appeared to be capable of sensing

both steroid and peptide hormones, and subsequently func-

tioning in distinct signaling pathways (Montoya et al.,

2002). A second form of versatility was demonstrated in

BRI1, an Arabidopsis RLK, which was able to either homodi-

merize or interact with another RLK, BAK1, under differing

conditions (Wang et al., 2005; Russinova et al., 2004; Wang

et al., 2005). The ERECTA RLKs also appear to be capable of

differential interactions in response to different ligands (John-

son and Ingram, 2005; Shpak et al., 2005). Given that most of

Figure 10. Correlation between Estimates of Sequence Divergence (dS) and Expression Distances (dr) by Subfamily.

(A) Pairwise dS measurements by subfamily. Divergences between coding sequences were calculated based on the rates of synonymous
substitution found between each pairwise comparison of all members within a given subfamily. Coding sequence alignments were based
on a multiple amino acid sequence alignment of subfamily members. Boxes represent the interquartile range with medians for each sub-
family indicated by marks. Ranges extend to data that fall within 1.5 times the boxed interquartile range, with outliers marked as individual
points. Box widths represent the proportion of observations within a given subfamily and notches that do not overlap among subfamilies
provide evidence of differences in their medians. Note that the single-member subfamilies C-Lectin and SD-3 are excluded.
(B) Correlation between sequence divergence and expression profile distance for each RLK subfamily. Pairwise dS measurements were nor-
malized using the maximum value found across all subfamilies. Final r value for a subfamily represents the average of all observations within
the subfamily. Subfamilies with fewer than three members (C-Lectin, CrRLK1L-2, RKF3L, SD-3, and URK I) were excluded.
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the insights into RLK mechanics revolve around a few individ-

ual RLKs, the extent that such versatility exists among the large

contingent of unexplored RLKs is unknown. However, in light

of these models, our results highlight a number of RLK genes

that may be involved in multiple signaling pathways, and sug-

gest that such functional versatility may be a widespread fea-

ture of the RLKs.

Another explanation for the multiplicity of responses seen

among the RLKs is that an individual RLK may be a component

of a secondary response that exists downstream of separate

signaling pathways. This interpretation is particularly appeal-

ing for those RLKs whose transcriptional levels were regulated

by treatments known to induce physiologically related

responses in plants. In particular, it would explain the wide-

spread response, as well as the great degree of overlap, seen

in the bacterial, fungal, and viral pathogen assays. Although

the initial signaling events differ among these stimuli, they

are known to target a number of related downstream path-

ways within the infected host, including those involved in

the hypersensitive response, systemic acquired resistance,

and the de-novo generation of additional signaling molecules,

such as hydrogen peroxide and nitrous oxide (Kunkel and

Brooks, 2002). This interpretation, although likely, remains

to be demonstrated. In addition, the forms of RLK signaling

versatility mentioned here are not mutually exclusive; these

mechanisms may all be represented in the functional reper-

toire of the RLK superfamily.

The potential for complex signaling responses seen among in-

dividual RLKs is further enhanced when considered at the sub-

family level. Previously, it had been speculated that, due to

the differential configurations of their extracellular domains,

membersofeachsubfamilymightbeinvolvedinsimilarsignaling

pathways. Here, we have shown that each subfamily exhibited

transcriptional responses to a diverse set of signal types. The tar-

geting of signals, such as hormones, to different members of the

same gene family is a known phenomenon in plants (Nemhauser

et al., 2006). In the case of RLKs, it may be that, within a given

subfamily, individual members have roles in disparate signaling

events. However, the diversityof responses seen withineachsub-

familymay also indicatea mechanism bywhichdifferent types of

signals may be perceived by specific members of the same sub-

family, yet induce similar downstream signaling events. This

Figure 11. Associations among Median Values of Sequence Divergence (dS), Sequence Distance (dseq), Expression Profile Distance (dr), and
Selective Pressure (dN/dS) for Each RLK Subfamily.

For each measure, median values for a given subfamily were calculated based on all pairwise comparisons of members within that subfamily.
Off-diagonal panels contain scatter plots of median values for each subfamily according to the measures indicated. Dashed lines represent
linear best fits, with the overall correlation among observations given (r). On-diagonal panels depict the distribution of median values
among all RLK subfamilies for each measure noted.
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mechanismwouldallowforthe integrationofmultiplesignaling

inputs in forming a finely tuned physiological response to com-

plex environmental conditions.

Redundancy and Novelty in the Expansion

of the RLK Superfamily

As noted in the literature, a major problem in determining RLK

functionality has been the frequent inability to establish phe-

notypes in single loss-of-function genetic lines (Johnson and

Ingram, 2005). One factor possibly contributing to this problem

was the lack of physiologically relevant screening conditions

(Shiu and Bleecker, 2001b). However, a second factor cited

was the likely existence of functional redundancies among sim-

ilar RLKs (Shiu and Bleecker, 2001b; Dievart and Clark, 2004;

Shpak et al., 2003). A common use of microarray data is to pre-

dict functional similarities and interactions among genes by

looking for similarities in their expression patterns (Walker

et al., 1999; Hughes et al., 2000). This concept has been the basis

for active areas of research in clustering and classification meth-

ods, as well as in terms of biological discovery, such as inferring

regulatory networks and signaling pathway components.

The results of our work provide a detailed expression profile

of each RLK gene not only in response to a range of screening

conditions, but in relationship to genes both within its own

subfamily and across other RLK subfamilies. The conserved ex-

pression profiles within each subfamily—particularly from

genes with high sequence similarity—are obvious candidates

for functional redundancies. Curiously, we also found a great

degree of expression similarity between members from differ-

ent subfamilies. This result suggests that functional relation-

ships may also be common among members of separate

subfamilies. Such a phenomenon has been experimentally

demonstrated in the interaction of a member of the LRR X sub-

family, BRI1, with a member of the LRR II subfamily, SERK1II/

BAK1 (Nam and Li, 2002; Russinova et al., 2004). It should

be noted, however, that our data do not capture tissue-specific

divergences that may exist among the expression patterns. Al-

though functional overlaps may exist among those RLKs with

similar expression patterns, they may not always result in re-

dundancy if expression is restricted to discrete domains. None-

theless, the datasets we provide allow future experimental

designs to account for possible complementarity or interac-

tions among such similarly expressed RLK genes.

The diversity of expression profiles we found within each

subfamily may also explain the expansion and retention of

RLK genes within the Arabidopsis genome. Previous analyses

support the hypothesis that gene duplication played a major

role in the appearance of the multi-member RLK subfamilies in

Arabidopsis (Shiu et al., 2004; Morillo and Tax, 2006; Becraft,

2002). It is thought that one key to retaining such duplicates is

through functional diversification, and that divergence in

gene expression may be a primary step in this process (Gu et al.,

2002; Ganko et al., 2007). Here, we found a high level of diver-

gent expression among RLK subfamilies, and we investigated

possible evolutionary dynamics underlying this divergence.

In our analysis of selective pressure on the RLKs, we found

that all of the subfamilies appear to be under some degree of

purifying selection when considering the ratio of non-

synonymous-to-synonymous substitution rates for full-length

sequences within each subfamily. It should be noted that

others have reported finding signs of positive selection at spe-

cific sites within the extracellular domains of some RLK sub-

groups (Shiu et al., 2004; Verica et al., 2003; Strain and

Muse, 2005; Zhang et al., 2006). However, we did find that

the strength of purifying selection varied among the subfami-

lies and that about a third of the subfamilies displayed some

degree of association between selective pressure and expres-

sion divergence. The positive association found among eight

of the subfamilies may reflect a dynamic in which relaxed pu-

rifying selection may have allowed for greater divergence in

expression to evolve (Good et al., 2006; Gu et al., 2002; Zhang,

2003). Interestingly, we found that six of the subfamilies had

an inverse association between selective pressure and expres-

sion divergence. In these cases, even those sequences under

greater selective pressure relative to other members of its sub-

families were able to diverge in expression.

Finally, we compared expression divergence to two meas-

ures of the amount of sequence evolution found among sub-

family members: sequence distance (dseq) and sequence

divergence time (dS). In terms of expression distance, we found

20 of the subfamilies (53%) displayed some association with

sequence distance, and 11 of the subfamilies (29%) showed

an association with sequence divergence time. Given that

seven of the subfamilies overlapped between these results,

24 of the 38 subfamilies (63%) we analyzed, representing

251 of the 604 RLK genes (42%), showed signs of an association

between sequence evolution and expression divergence. Eigh-

teen of the subfamilies (47%), representing 220 RLK genes

(36%), had a positive association in which more diverged

sequences had higher levels of expression divergence. Interest-

ingly, six of the subfamilies (16%) representing 31 RLK genes

(5%) had an inverse association in which the more closely re-

lated sequences had the more divergent expression patterns.

In either case, it may be that the great amount of expression

divergence seen within the individual RLK subfamilies served

as a primary mechanism for maintaining such an expansive

number of RLK genes in the Arabidopsis genome (Gu et al.,

2002; Ganko et al., 2007). However, as our results suggest, al-

though many paralogs within the RLK subfamilies have been

retained, it appears that distinctly different evolutionary pro-

cesses might have determined their fates.

METHODS

Microarray Experiments, Data Preparation, Signal

Log2 Ratios

The data presented in this study were generated from 68 in-

dividual experiments coordinated by Syngenta, Inc., using

the Syngenta custom Arabidopsis GeneChip array
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(sysSYNG002a, Affymetrix, Santa Clara, California, USA). Note

that data produced in these experiments passed manual qual-

ity examination and datasets representing different areas of

focus from the one presented here have been published

(see Supplemental Table 1). Experimental parameters from

these experiments, including details of treatments, dosages,

and tissues, are described in Supplemental Table 1. Subsequent

cDNA synthesis and hybridization were performed as de-

scribed by Zhu et al. (2001).

CEL files from each experiment were processed by a uniform

algorithm (Zhu and Wang, 2000) and signal readings were

globally scaled across each array to an arbitrarily defined tar-

get value (Zhu et al., 2001). The expression indices of 604

known and predicted RLK genes (Shiu and Bleecker, 2001a)

represented on the GeneChip array were extracted and paired

as control and treated samples according to experimental de-

sign. For each experiment, any gene with an average differ-

ence (signal reading) of less than 5 in either or both the

control or treatment sample were disregarded (Chen et al.,

2002; Zhu et al., 2001). Signal log2 ratios were generated by

taking the ratio of the treatment signal reading to the control

signal reading and performing a log2 transformation (Chen

et al., 2002).

Note that, in each experiment, the samples were pooled

from at least eight individual plants receiving the same treat-

ment (or mock treatment) in order to control for biological

variation. Consequently, the detected mRNA levels represent

an average reading of the biological replicates. To ensure data

quality and stability in the analyses, the biological reproduc-

ibility of the samples was tested by performing 11 experiments

with biological replicates. The results showed a high level of

correlation among the replicated experiments, with each com-

pared experimental results having a correlation of r . 0.90.

Because the complexity and diversity of experimental

designs represented in the dataset did not allow for explicit

modeling of variation among biological replicates across all

conditions, we were restricted to using a heuristic approach

to identifying changes in gene expression. Consequently, we

sought to impose relatively stringent criteria for classifying dif-

ferentially expressed genes. In this case, we chose a two-fold

cut-off based on a preliminary analysis of false-positive rates,

in which the false-positive rate at a two-fold threshold was

demonstrated to be 0.2% (Zhu and Wang, 2000). Finally, an

exhaustive, secondary confirmation of all gene expression

changes under all conditions in this study was not tractable.

However, an independent set of experiments based on RNA

gel analysis have confirmed the GeneChip data for a subset

of genes and conditions presented here (Zhu et al., 2001).

Gene Expression Profile Distances

To measure similarity among expression profiles, we concate-

nated 104 arrays from our study and created a matrix of nor-

malized signal readings for the 604 RLK genes. An expression

profile for a given gene was represented by its vector of signal

readings across the 104 arrays. To calculate gene expression

distances between any two genes, we first computed the

mean-centered Pearson product-moment correlation coeffi-

cient (r) between the expression vectors X and Yof the genes,

where i represents the array number and N the total number

of arrays:

rðX;YÞ=
1

N

XN
i=1

�
Xi � X

rX

��
Yi � Y

rY

�
;

where

rx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i=1

ðxi � �xÞ2

vuut :

The distance in gene expression between any two genes i and j

was then calculated as:

drði; jÞ= 1 � rði; jÞ:
In the process of determining correlation values, if a signal

reading for either gene from a particular array was below 5,

we removed the array for that particular comparison.

Once the distances were computed for all pairwise compar-

isons within the matrix (182 106 comparisons in total), we nor-

malized the distances by dividing each distance between any

two genes i and j by the largest value found in the resulting

dataset:

drði; jÞ= 1 �
�

ri;j
maxðrÞ

�
:

This normalization transformed the distances to a scale of 0 to

1, with 1 being most distant. In parsing the dataset into sub-

family-based comparisons, we followed the subfamily classifi-

cation scheme designated by Shiu and Bleecker (2001a).

Clustering Methods and Silhouette Width Analysis

The RLK gene expression profiles were clustered in two ways

for analysis. The first clustering consisted of the manual sepa-

ration of the 604 expression profiles into 43 a priori clusters

based on the noted subfamily classification scheme (Shiu

and Bleecker, 2001b). The second clustering was performed us-

ing the R implementation of the Partitioning Around Medoids

(PAM) algorithm (Kauffman and Rousseeuw, 1990). Given a set

of K medoids, PAM clusters observations by assigning each ob-

servation to its nearest medoid. The K medoids selected by the

algorithm minimize the sum of the distances of each observa-

tion from its nearest medoid. Forty-three clusters were speci-

fied for the PAM clustering to correspond with the number of

subfamily clusters.

Silhouette widths were calculated for the a priori clustering

and the PAM clustering (K = 43). The same distance matrix

based on the Pearson correlation (dr) was used to calculate sil-

houette widths for each clustering approach. The silhouette

width (si) of a given observation i is defined as:

si =
ðbi � aiÞ

maxðai;biÞ
;

where ai represents the average distance of i to all other obser-

vations in its cluster, and bi represents the average distance of i
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to the observations in its nearest neighboring cluster. The av-

erage silhouette width for a cluster (si
C) is the average of the

silhouette widths for all members of a cluster. The average sil-

houette width for a cluster structure (si
D) is the average of all

silhouette widths in the dataset.

The Hierarchical Ordered Partitioning and Clustering Hybrid

(HOPACH) algorithm was also used as a potential clustering

method. HOPACH combines hierarchical clustering with parti-

tioning, creating a data-adaptive tree that is composed of par-

titions at each level K. The optimal number of child clusters in

partitioning steps, as well as the optimal number of clusters to

be joined in collapsing steps, rely on the mean or median split

silhouette measure of cluster heterogeneity (van der Laan and

Pollard, 2003). For a given number of clusters k, a partitioning

clustering method (in this case, PAM) is applied to each cluster.

The split silhouette is defined as the maximum average silhou-

ette width when the partitioning clustering method is applied

to the elements of cluster k only. The mean split silhouette is

the average of the split silhouettes over all clusters.

Hierarchical Clustering and Gene Expression

Linkage Analysis

We created an initial distance matrix containing the normal-

ized expression distances (dr) for all pairwise comparisons

among 585 RLK genes, with the 19 unclassified RLK genes re-

moved from the dataset. Then, for each comparison between

subfamilies, we averaged the expression distances found be-

tween their members to create a 43-by-43 subfamily distance

matrix. We performed hierarchical clustering on the subfamily

distance matrix using the hclust function provided by the stats

package in R (version 2.6.2, www.r-project.org).hclust relies on

an agglomerative algorithm in which each initial object (here,

subfamilies) is assigned to its own cluster. The two most similar

clusters in the matrix as measured by average gene expression

distance are then joined and distances between the new clus-

ter and all remaining objects are re-calculated. In our imple-

mentation, we used an average linkage method to update

distances, in which the new distances are calculated based

on the average distances between members of separate clus-

ters. Consequently, the dendogram depicted in Figure 7 repre-

sents an average-linkage hierarchical clustering of subfamilies

based on average-linkage gene expression distances.

Pairwise Sequence Alignments and Distances

We extracted amino acid sequences representing the 604 Ara-

bidopsis RLKs from the NCBI GenBank protein database

(www.ncbi.nlm.nih.gov) using the AGI identifiers provided

by Shiu and Bleecker (2001a). Supplemental Table 5 contains

a map of the AGI and GI identifiers and subfamily classification

for all RLKs used in this study. In determining distances among

these sequences, we first used sequence alignment scores (si,j)

as a measure of similarity. The alignment scores were com-

puted by performing all-against-all pairwise alignments

(182 106 in total) among the set of 604 RLK sequences. The

alignments and scores were generated by ClustalW (version

1.83) and the Gonnet series of substitution matrices, with

gap open and extension penalties of 10.0 and 0.1, respectively

(Thompson et al., 1994; Gonnet et al., 1992).

To convert the alignment score between any two sequences

i and j into a sequence distance, we normalized each score us-

ing the maximum value found among all observations and

subtracted it from 1:

dseqði; jÞ= 1 �
�

si; j

maxðsÞ

�
:

Correlations between sequence distances and expression dis-

tances were calculated for each subfamily by comparing dseq

and dr for matching sets of pairwise comparisons over all com-

parisons within each subfamily, using the Pearson product-mo-

ment correlation coefficient.

Multiple Sequence Alignments, dN/dS Ratios,

and Sequence Divergence Estimates

We retrieved nucleotide sequences representing coding DNA

for 585 RLKs from the Arabidopsis Information Resource web-

site (TAIR, www.arabidopsis.org), excluding those RLK genes

that remain unclassified. We divided the RLK protein and nu-

cleotide coding sequences into 43 subfamilies based on the

classification scheme designated by Shiu and Bleecker

(2001b). For each subfamily, we produced a multiple protein

sequence alignment using the program MUSCLE (version

3.6) (Edgar, 2004). Based on the multiple protein sequence

alignment, we then created a multiple sequence alignment

of the coding DNA for all members of each subfamily. In some

cases, extremely long or short sequences caused the inclusion

of a high number of gaps in the protein sequence alignment,

which resulted in very short DNA alignments. When this

occurred, the long/short sequences were removed from fur-

ther analysis and the protein and nucleotide sequences were

re-aligned. Overall, three subfamilies were affected by this

modification: LRK10L-2 (two of eight sequences removed),

LRR VIII-2 (five of 14 sequences removed), and PERKL (four

of 19 sequences removed).

For each subfamily, dS and dN/dS were calculated for each

pairwise comparison of codon alignments within the subfam-

ily using the yn00 program in the PAML package (Yang and

Nielsen, 2000; Yang, 1997). Codons aligned to gapped regions

in the alignment were removed during this process. When nor-

malizing these measures, we divided each value by the highest

measurement found across all subfamilies. For each type of

measurement, correlations with normalized expression profile

distances were calculated for matching sets of pairwise com-

parisons over all comparisons within each subfamily, using

the Pearson product-moment correlation coefficient.

Mosaic, Box, and Scatter Plots

The mosaic and box plots depicted in the manuscript were cre-

ated using the mosaicplot and boxplot functions provided by

the graphics package in R (version 2.6.2). The scatter plot ma-

trix was produced in R using the car package (version 1.2-7).

Chae et al. d Transcriptional Profile of Arabidopsis RLK Genes | 103

www.r-project.org
www.ncbi.nlm.nih.gov
Supplemental Table 4.
www.arabidopsis.org


The silhouette plots were generated using the plot function

on silhouette objects created both by custom R code and by

the silhouette function found in the cluster package in R

(version 1.11.10).

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.
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